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Abstract—Ultrasound (US) imaging clarity is often hindered
by acoustic shadows caused by highly reflective structures, ob-
scuring critical anatomy in the images. This issue is particularly
problematic in needle-based interventions, where needle-induced
shadows and reverberations can severely obstruct visualization,
complicating the procedure and increasing the risk of misplace-
ment. To address this problem, we propose a new 3D image
compounding algorithm to remove needle shadows and allow the
US probe to see behind reflective objects. Our approach acquires
2D US images from multiple imaging angles and computes the
probability that the US wave has reached each pixel in the
images. We then propose a nonlinear function to weight these
2D images based on their pixel intensity and acoustic signal
consistency before they are combined to form a 3D volume.
Regions corresponding to shadows are adaptively suppressed,
while highly informative areas are compounded to create an
accurate volumetric representation. This volume is then sliced
along arbitrary imaging planes to form new, shadow-free images.

Experimental validation in phantom tissue comparing the
original US images with the images created with the proposed
algorithm shows significant improvement in image clarity and
tissue inclusion delineation. The proposed method is compared
against other conventional image compounding techniques and
shows improvements in image signal to noise ratio and normal-
ized cross corelation. By enhancing the reliability of 3D US image
compounding, the proposed multivariable, nonlinear weighting
function contributes to more precise and accurate US image
guidance for needle-based diagnostics and interventions.

Index Terms—Ultrasound imaging, 3D compounding, shadow
removal, needle imaging

I. INTRODUCTION

Ultrasound (US) is a widely used imaging modality to guide
targeted percutaneous surgery due to its real-time imaging
capability, cost-effectiveness, and accessibility. These proce-
dures involve inserting a needle or catheter into a target
within the body under US guidance, and are commonly
employed in interventions such as tumour ablation, biopsy,
and nephrolithotomy [1]. Despite its advantages, US imaging
presents significant challenges for precise needle targeting. US
imaging is inherently limited by acoustic shadows caused by
highly reflective structures, such as bones, air pockets, and
the surgical tools themselves, which obscure critical anatom-
ical structures in the images, compromising accurate needle
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placement [2]. This issue becomes even more problematic in
interventions involving multiple needles, such as kidney tu-
mour ablation, where overlapping shadows and reverberations
caused by ablation probes can obstruct the target area in the
image, complicating the procedure and increasing the risk of
misplacement.

Various techniques have been developed to enhance visual-
ization and needle targeting, and address the challenges posed
by needle shadowing and low image quality. Needle shadow
removal methods range from advanced image processing, such
as model-based shadow detection and deep learning denoising,
to compounding approaches that integrate US beam steering
to enhance clarity [3]–[10]. In most of these applications,
shadow detection is task-specific and mainly based on heuristic
image features or special anatomical constraints. With the help
of deep learning, these algorithms can detect and distinguish
shadows originating from different sources [11], [12]. How-
ever, they require a large amount of data for training.

One common shadow removal approach is 2D image com-
pounding, in which images are acquired from multiple beam
steering directions without physically moving the probe. The
images obtained from different steering directions are then
merged into a single compound image [13]. While this ap-
proach can partially reduce needle shadows, it is limited by
the inherent constraints and limited angle of 2D beam steering,
and therefore, it may not completely eliminate shadowing arti-
facts depending on the needle position and angle relative to the
probe. A more effective solution is 3D spatial compounding,
where multiple images are acquired by orienting the ultrasound
probe to capture images from different perspectives [14]. The
images are then combined to fill in shadowed areas with valid
data. To combine images acquired from different angles, [15]
developed a method that assigns regional weights to pixels
depending on the local incidence angle of the ultrasound beam.
Another method uses multiscale information to weigh the
contributions of each image in the final compounded image
[16]. In [17], image features are used to remove outlier pixels
due to artifacts and down weigh inconsistent regions.

While traditional 3D compounding methods improve
shadow removal and image quality compared to 2D beam
steering [18], they cannot tell apart regular image data from
shadows, often resulting in missing or distorted anatomical
structures. In particular, they tend to retain high intensity
pixels, which may arise from unwanted reverberations in
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the image. To minimize this problem, probabilistic methods
capable of distinguishing between regular data and shadows
may be considered to weigh the contribution of each image
in the final compounded image. In [19], a support vector
machine generates probabilistic maps to detect shadows in
each image before combining them. An evolution of this
method, presented in [20], uses a convolution neural network
to estimate the structure’s echogenicity and weight each image
accordingly. These approaches require large labelled datasets
for training. To address this limitation, multi-scale image
fusion using Laplacian pyramids can be tuned to retain the
most prominent image features and reject outlier pixels [21].

Alternatively, confidence maps may be used to assess image
quality. A confidence map is derived from intensity variations
and acoustic signal consistency to differentiate between high-
certainty and low-certainty regions in an image. Karamalis
et al. introduced the concept in 2012 [22], and ever since,
confidence maps have been widely used in US image pro-
cessing for quality assessment [23], [24]. It has also been
applied to 3D image compounding to deal with uncertainties
in attenuated regions [25], where confidence values become a
weight parameter to compose several image clusters.

The works mentioned above focus primarily on enhancing
image quality from multiple projections; however, they are
designed for tissue imaging and speckle noise reduction rather
than needle shadow removal. Recovering shadowed areas in
an image occluded by the needle shaft remains an open and
critical problem in US-guided percutaneous surgery [26], [27].

In this paper, we present a new approach specifically de-
signed to minimize needle shadows in US images. Similar to
3D image compounding, we acquire overlapping 2D images
from different angles to bypass highly reflective needles and
capture echoes from regions otherwise obscured by them.
We then measure the confidence of every pixel in each 2D
image based on the probability that the US beam has reached
that point in the tissue in the presence of the needle. Unlike
previous methods, before these angled scans are combined into
a volume through a function-based compounding method, we
propose to assign weights to every pixel in overleaping images
based on both US pixels’ intensity and confidence values.
These weighting function, specifically designed to minimize
needle shadowing, emphasizes the anatomical structures and
the needle, while surpassing shadowed areas and allowing the
algorithm to see around attenuating or reflective structures and
fill in these shadowed areas with valid data.

Previously reported methods cannot distinguish high in-
tensity pixels arising from needle reverberations from those
arising from anatomical structures. As a result, they would
remove the needle from the image. In contrast, as the proposed
method merges confidence maps with pixel intensity in a
unified weighting function, we show that our method improves
anatomical clarity and contrast in reconstructed images, while
preserving the needle in the image, which is essential for real-
time guidance. The next section introduces the confidence-
aware 3D compounding algorithm and the novel weighting
function. We validate our approach experimentally in Sec.

III on artificial phantoms imaged by a linear US probe,
and compare its performance against two conventional 3D
compounding techniques in Sec. IV. The results demonstrate
that our method effectively reduces shadow areas in the image
and enhances image quality. The results are followed by a
discussion and conclusion on the proposed contribution and
recommendations. This advancement holds potential for im-
proving imaging in interventional procedures, robotic surgery,
and diagnostic assessments.

II. CONFIDENCE-AWARE IMAGE COMPOUNDING

The proposed 3D compounding algorithm involves 5 steps:
1) A 3D, empty voxel V is created. Each pixel in the voxel

will be filled in with pixels from 2D US images.
2) 2D US images of a sample are acquired from different

angles. The operator physically orients the US probe to
image the target area from slightly different angles while
the probe’s position and orientation are measured in real-
time. The image’s corresponding position in the voxels
is then determined through a rigid spatial transformation.

3) A physics-based model calculates the probability that
the acoustic wave has reached a certain area in each 2D
image, indicating the reliability of every image pixel;

4) The pixels from each image are weighted by a non-
linear function of pixel intensity and confidence value.
The overleaping pixels are passed through a weighted
averaging before they fill in the 3D voxel;

5) The voxel is sliced along an arbitrary imaging plane to
form new, shadow-free 2D images.

These steps are explained in detail in the next subsections.
Hereafter, bold lower and upper case letters stand for vectors
and matrices, respectively, and unbolded letters for scalars.

A. Multi-angle Image Acquisition and Registration

Assume a sequence of 2D US images of a tissue sample
acquired from different orientations while the 3D position and
orientation of the probe are recorded. A series of coordinate
frames must be defined to find the rigid transformation relating
the position of each pixel in the US image to the corresponding
voxel in 3D volume. To that end, let (WF) be the world
reference frame, and (SF) the coordinate frame describing the
position and orientation of the sensor attached to the US probe.
Further, let (PF) be the coordinate frame of the US imaging
plane, and (VF) the reference frame given the origin of the
3D volume V. The homogeneous transformation VTP from
the probe frame PF to the 3D volume frame VF is:

VTP =
VTW

WTS
STP (1)

where BTA is the homogeneous transformation from AF to BF .
Now, let each 2D image S have pixels with intensity I(p)

where p = [m n 0]T gives the coordinate of the pixel in image
S and m and n are the vertical and horizontal pixel coordinates
in the image. The equivalent location of each pixel in the 3D
volume V is:

x = VTP(p). (2)



Fig. 1. Longitudinal US image of an 18-G needle imaged from the top
of the image. (a) show the reverberations caused by the needle and (b) the
corresponding confidence map. The confidence below the needle is zero.

where each position x ∈ V is hereafter called a voxel. To
convert the coordinates of the pixel to voxel, the nearest
neighbour is applied to the result of (2) and find the nearest
voxel in the 3D volume [14].

In traditional image compounding, pixels that overlap onto
a single voxel are averaged and then added to the 3D volume.
The intensity of voxel I(x) is:

I(x) =
1

N

∑
N

I(p) (3)

where N is the number of overlapping pixels. This formulation
weighs all images equally. To remove the effect of artifacts and
shadows, this equation must be reformulated to account for the
acoustic signal quality of each pixel.

B. US Confidence Map

As acoustic waves travel through tissue, they experience
acoustic attenuation and reflections. The intensity of the echoes
that return to the probe are converted into pixel intensity
in a 2D image. Consequently, the signal quality is often
non-uniform across the image. Confidence maps, introduced
in [22], evaluate the probability that the acoustic wave has
reached the point in the tissue corresponding to an image pixel.

Considering the confidence value of each pixel is C(p) ∈
[0 1]. For pixels near the US probe C(p) → 1 (the highest
probability that the US wave has reached those points), while
for those located at the bottom of the image C(p) → 0. For
other pixels in between, the probability is unknown and must
be calculated using an US propagation model. The algorithm
used in this work is briefly provided here, while the complete
method can be found in [22]. It involves the following steps:

1) Calculate the US propagation weight wij between two
adjacent pixels pi and pj as:

wij =


e−β|gi−gj | vertically adjacent
e−β(|gi−gj |+γ) horizontally adjacent
e−β(|gi−gj |+

√
2γ) diagonally adjacent

(4)
where g is the attenuated signal intensity at each pixel
with depth d and intensity I(p), defined as g =
I(p)e−αd. Here, α, β, and γ are tunable attenuation
coefficients.

2) Calculate the Laplacian matrix L as:

Lij =


∑

j wij i = j

−wij adjacent pixels
0 otherwise

(5)

3) Rearrange L according to the weight between all known
pixels LK and the weight between all unknown pixels
LU as:

L =

[
LK B
BT LU

]
(6)

4) Solve the following linear equation for the unknown
confidence vector cU based on the known confidence
vector cK :

LU cU = −BT cK (7)

5) Finally, the confidence map is formed by accumulating
cN and cU in matrix C.

The confidence of each pixel depends on the tissue proper-
ties and also on the path travelled by the signal from that point.
Therefore, as a strongly reflective object blocks the ultrasound
signal propagation, it decreases the confidence level of pixels
beneath it. This is highly beneficial in detecting shadowed
regions or reverberations below such reflective objects, like a
needle, as can be seen in Fig. 1.

C. Confidence-Aware 3D Compounding

Once the confidence value of every pixel in each 2D image
is known, overlapping pixels must be weighted or averaged
to fill in the corresponding 3D voxel. While confidence-based
weighted averaging for 3D compounding was discussed in [25]
with improvements in image quality, previous works do not
consider the presence of the needle in the image. As shown
in Fig. 1, the confidence level of the needle and anything
below it in the image tends to zero. If the algorithm only
considers the pixel confidence when forming the 3D volume,
such as the formulation in (3), the needle will be invisible
in the reconstructed 3D volume. Conversely, if only the pixel
intensity is used, the high intensity pixels below the needle
shaft caused by reverberation will shadow the tissue.

To solve this problem, we propose a nonlinear weighting
function that takes into account both the confidence C(p) at
p and the intensity I(p) of each pixel. Let the intensity of
the compounded voxel x in the 3D volume, first introduced
in (3), be redefined with a normalized weighted sum instead:

I(x) =

∑
N f(C(p), I(p))× I(p)∑

N f(C(p), I(p))
, (8)

where f(C, I) is a function to be defined that depends on
both C(p) and I(p). We observe that different combinations
of C(p) and I(p) indicate specific elements in an image:

• High I(p) and high C(p) indicate anatomical structures
with informative data. As these areas must be retained
with emphasis, the function should output f(C, I) → 1;

• High I(p) and low C(p) indicate a highly reflective
object, such as a needle, which must be kept, therefore
the weight function should output 0 << f(C, I) < 1;



Fig. 2. Comparison between confidence-based weighting and the proposed
weighting in (9), of the US image and confidence from Fig. 1. In (a)
multiplying pixels’ intensity by their confidence map suppresses the needle. In
(b) multiplying pixels’ intensity by (9) results in a clear image of the needle
while its reverberations are eliminated.

Fig. 3. Image acquisition setup with a linear US probe. Coordinates frames
defined for the US imaging plane, position sensor, world frame, and the 3D
volume are PF , SF , WF , and VF respectively.

• Low I(p) and high C(p) corresponds to tissue above an
attenuating object, which higher I(p) than regular tissue,
therefore the function should output 0 < f(C, I) << 1;

• Low I(p) and low C(p) indicate a shadowed area with
invalid data. As it should be suppressed from the image,
the desired weight is f(C, I) → 0.

Given the desired behaviour of f(C, I) for different ranges of
I(p) and C(p), f(C, I) may be defined as:

f(C, I) =
1

1 + e−[k1C(p)+k2I(p)−k3]
, (9)

where k1, k2, and k3 are tunable constants that can be chosen
to satisfy the above requirements.

Fig. 2(a) shows the result of multiplying the US image from
Fig. 1(a) by its confidence map (shown in Fig. 1(b)). Fig. 2(b)
shows the result of multiplying every pixel from Fig. 1(a) by
(9) for k1 = 5, k2 = 10, and k3 = 6. With the proposed
formulation, the needle and surrounding tissue are given a
higher weight, while keeping the weight of the shadowed low.
This will ensure that the needle is visible in the reconstructed
volume and the influence of shadowed areas is negligible.

TABLE I
ULTRASOUND IMAGE ACQUISITION PARAMETERS

frequency gain focus depth dyn. range power

7.5 MHz 85 % 14-21 mm 40 mm 102 dB −2 dB

III. EXPERIMENTAL VALIDATION AND RESULTS

While the proposed algorithm works with freehand ultra-
sound, to simplify the experimental validation and ensure
consistency across different trials, we use the robotic-actuated
setup shown in Fig. 3. A 40-mm linear US probe (L15-7H40-
A5 from Telemed Ultrasound, Vilnius, Lithuania) is attached
to the end-effector of a 6-DOF robot arm (Meca500 from
Mecademic, Montréal, Canada). The US machine streams
images at 30 Hz according to the parameters given in Table I.

The US probe is positioned on top of two different ar-
tificial phantoms made of 4% agar. Harder, small tumour-
like inclusions made of 10% agar are inserted at different
spots in each phantom. With the phantoms fixed in place,
the US probe is oriented at 5 different angles about Px, i.e.,
θ = −20◦,−10◦, 0◦, 10◦, 20◦. At each of these orientations,
the robot slides the probe along P z by 20 mm with increments
of 0.1 mm while US images are taken. The process above is
repeated for all orientations. After all 5 sets of scans are taken,
an 18-G needle is inserted in the phantom longitudinally to the
imaging plane. The image acquisition process is then repeated
with the needle in the tissue. Once the images are acquired,
the 3D volume is created following the procedure outlined
earlier. The volume can then be sliced along any imaging
plane to produce new 2D images that can be compared with
their real, corresponding images taken at the same location
and orientation.

In the first test scenario, the phantom contains one inclusion,
as it can be seen in the single US image in Fig. 4(a), taken at
θ = 0 before the needle is inserted. Fig. 4(b), taken at the same
location with the needle inserted, shows that when the needle
is aligned to the imaging plane, it degrades the image quality
as it blocks the US signal and shadows the anatomical structure
beneath it. The volumetric image of the tissue reconstructed
with the proposed algorithm is shown in Fig. 4(c). This volume
is then sliced along the orientation and about the same position
as that of Fig. 4(b). The resulting image in Fig. 4(d) shows
a higher quality and better delineation of the inclusion below
the needle than the original 2D image.

In the second test scenario, we used the same phantom but
inserted the needle from a different insertion point toward
the inclusion. Fig. 4(e) Fig. 4(f) show the original 2D image
and the one created with the proposed method. These results
show the ability of the proposed method in reconstructing the
volume and recovering the shadowed area. The 3D volume
can be seen in Fig. 4(g-h).

In the third scenario, the phantom contains three smaller
inclusions, as shown in the original 2D image in Fig. 5(a).
Once the needle is inserted, the shadowing effect is again
visible, see Fig. 5(b). The same procedure as the first two
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Fig. 4. Experimental results in Scenarios 1 (b-d) and 2 (e-h). In (a) the US image of the phantom containing an inclusion, used in both Scenarios. Fig.
(b) shows how the presence of the needle darkened the inclusion. (c) shows the reconstructed 3D volume compounded from multi-angle scans, and (d) the
resampled image taken at the same location as that in (b). In (e) the image shows the shadowed area of the inclusion caused by the needle in scenario 2, (f)
shows a resampled slice at the same location as in (e) acquired from the compounded volume shown in (g) and (h).

scenarios is followed for image reconstruction. The volume
is seen in Fig. 5(c), and the corresponding image taken from
the volume along the same orientation as Fig. 5(b) is shown
in Fig. 5(d). As we can see again, the reconstructed image
provides better detail and better inclusion delineation than the
original single image.

IV. COMPARISON

To quantitatively evaluate the proposed method, we compare
our results against two similar algorithms. The first one is
the standard 3D compounding, where the contribution of
overlapping pixels to a single voxel is averaged [14]. The
second method is the confidence-weighted averaging presented
in [25]. To measure the quality of the images, signal-to-
noise ratio (SNR) and normalized cross-correlation (NCC) are
computed for a region of interest (ROI) in the original and
reconstructed images containing the inclusion. SNR quantifies
the level of information (signal) relative to unwanted image
distortions (noise), as a metric to assess image clarity as:

SNR =
µROI

σB
,

where µROI is the mean of the inclusion area and σB is the
standard deviation of the background. The higher the SNR,
the clearer and more detailed the image is. NCC measures
the alignment of intensity between two images while being
invariant to changes in brightness. It can be defined as:

NCC =

∑
p(IROI(p)− ĪROI)(TROI(p)− T̄ROI)√∑

p(IROI(p)− ĪROI)2
∑

p(TROI(p)− T̄ROI)2
,

inclusions

needle
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inclusion
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Fig. 5. Experimental results in Scenarios 3: In (a) the US image of the
phantom containing three inclusions. Fig. (b) shows how the needle has
darkens one of the inclusions. In (c) the 3D volume compounded from multi-
angle scans is shown, from which the resampled image shown in (d) is taken,
at the same location as that of (b).



TABLE II
COMPARISON OF SNR AND NCC IN THE ROI WITH OTHER ALGORITHMS

Averaging [15] CW-weight [25] Proposed method

Test scenario SNR NCC SNR NCC SNR NCC

Scenario 1 8.15 0.69 8.21 0.88 8.27 0.95
Scenario 2 8.13 0.71 8.25 0.92 8.33 0.94
Scenario 3 7.67 0.74 8.26 0.90 8.38 0.92

where IROI and ĪROI are the ROI of the reconstructed image
and the mean pixel intensity within, respectively, and TROI

and T̄ROI are the ROI of the ground truth slice, like Fig. 4(a),
and the mean pixel intensity within. If TROI = IROI , then
NCC = 1. The results provided in Table II demonstrate the
superior ability of the proposed method to fill the shadowed
regions and enhance the image quality.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a confidence-aware US image
compounding algorithm to address problems related to needle
shadowing artifacts that cover sensitive structures in the image.
We proposed a two-variable weighting function to be used in a
normalized weighted voxel averaging. This function is capable
of removing low-confidence areas, containing the shadows
and other artifacts, while retaining informative structures. The
experimental validation performed on artificial models shows
that the algorithm can successfully generate an enhanced 3D
volume by retaining information from sensitive structure and
removing shading artifacts. A comparison of the obtained
results with the two similar methods shows that the proposed
algorithm offers superior image quality and lesion delineation
than standard methods.

In the experimental results, we used a robotic actuated
US probe to obtain and compare images taken at the same
position and orientation. Yet, free-hand imaging will be more
applicable in real surgical procedures. Therefore, in the next
step, we will focus on integrating machine learning approaches
for sensorless image registration. In addition, while we tried
to minimize the calculation complexity of the method, image
reconstruction takes about 2 minutes and is performed offline.
Another focus of future work will be on implementing this
method in real-time. Finally, validating the method on ex-vivo
tissue to achieve more realistic results will also be considered.
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